

The Caspase-8/Caspase-3/GSDME-mediated pyroptosis contributes to inflammation and

antibacterial immunity in oysters

Jiejie Sun, Jinyuan Leng, Xiaopeng Li, Xiaoqian Lv, Wei Wu, Liyan Wang, Tong Zhang, Lingling Wang, Linsheng Song* Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China

ABSTRACT

Pyroptosis is a form of lytic programmed cell death mediated by the cleavage of gasdermins, which functions as an innate immune mechanism to facilitate host defense against invasive bacteria. In the present study, a gasdermin E (GSDME) was identified from the Pacific oyster *Crassostrea gigas* (defined as *Cg*GSDME) with a conserved N-terminal pyroptosis-triggering domain and a C-terminal repressor domain. There were four Caspase-3 cleavage sites in *Cg*GSDME sequence, which generated four N-terminal fragments (*Cg*GSDME-Ns). The obvious cleavage of *Cg*GSDME protein into fragments (*Cg*GSDME-N and *Cg*GSDME-C) in haemocytes and the swollen haemocytes with the presence of many vesicles were observed after *V. splendidus* stimulation. The binding of *Cg*GSDME/*Cg*Caspase-3 was evident in haemocytes pulled down by either *Cg*Caspase-3 or *Cg*GSDME immunoprecipitation after *V. splendidus* stimulation. When the activation of *Cg*Caspase-8 and *Cg*Caspase-3 was inhibited, the amount of *Cg*GSDME-N protein in haemocytes was reduced after *V. splendidus* stimulation. *Cg*Caspase-8, *Cg*Caspase-3 and *Cg*GSDME could induce the expressions and secretions of cytokines, as well as histological damage in gills. The recombinant *Cg*GSDME-N (r*Cg*GSDME-N) was able to bind multiple bacteria and assemble on the bacterial surface to generate pores. It displayed directly bactericidal activity and inhibited the growth of *V. splendidus* and *Staphylococcus aureus*. These results indicated that the cleavage of *Cg*GSDME by *Cg*Caspase-3 and *Cg*Caspase-8 not only mediated haemocyte pyroptosis and induced inflammation, and for the first time also showed direct bacteriostatic/bactericidal activity in the immune response of bivalve molluses.

RESULTS

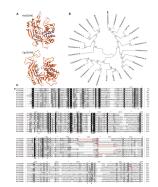


Fig.1 The molecular features of GSDM proteins from the Pacific oyster and other species.

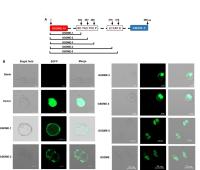


Fig.2 The subcellular location of *CgGSDME* N-terminal domains in HEK293 cells.

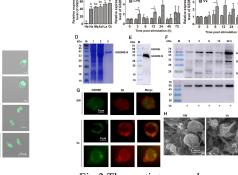


Fig.3 The spatiotemporal expressions of *CgGSDME*, the haemocyte pyroptosis and *CgGSDME* cleavage.

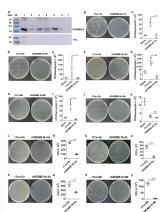


Fig. 6 The bacterial binding activity and bacteriostatic/bacteriostatic activity of rCgGSDME-N.

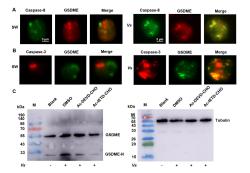


Fig. 4 The effects of *Cg*Caspase-8 and *Cg*Caspase-3 for *Cg*GSDME activation.

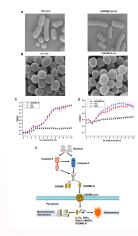


Fig. 7 The bacteriostatic activity of r*Cg*GSDME-N.

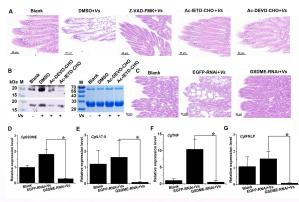


Fig.5 The effect of pyroptosis pathway on the inflammatory response and cytokine expressions.

CONCLUSION

The pyroptosis signaling pathway was characterized in invertebrates for the first time. The GSDME homologue (CgGSDME) identified in the Pacific oyster could be cleaved by CgCaspase-8 and CgCaspase-3 to induce pyroptosis of haemocytes. The generated N-terminal fragment of CgGSDME displayed directly and broad bactericidal/bacteriostatic activity and induced the inflammatory responses .These results were helpful for understanding the evolution of GSDME-mediated pyroptosis pathway and its roles in immune responses of molluscs.

