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1. Introduction

_

Background: Yellowfin tuna (Thunnus obesus) is an ecological and economical important pelagic species. They are widely distributed in the
tropical and subtropical 40° N — 40° S waters of the Pacific, Atlantic, and Indian Oceans with fast swimming speed and high mobility. Fish
species distribution models (SDMs) link information on the presence/absence or abundance of species to environmental variables to predict
where (and how much of) a fish is likely to be present in unsampled locations or time periods. The use of machine learning methods to predict
the distribution of species has shown good results. To study the relationship between yellowfin tuna and marine environment and to investigate
the distribution of yellow tuna for fishery management and decision-making, it is necessary to select the optimal variables in machine learning.
Objective: We apply feature selection methods to select the suitable predictor variables for constructing tree-based yellowfin tuna distribution
models exploring environments-abundance relationships in the Pacific Ocean. The process we manipulated in this study could be as an example
of selecting optimal predictor variable sets in machine learning distribution models for pelagic fishes with limited biological cognizance.
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2. Materials and methods
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/ 1. Data Preparation

Fisheries Data (from
WCPFC, IATTC)

Matching

Marine
environmental Data
(Temp, Sail, 02, Chl,

SSH, from
Copermicus)

2. RFECV

Fit base tree models with
all variables

Find variables
importances

-

Cross-validation

Remove weakest
variables

-

3. Selection results

Obtain the optimal
variables

Tuned tree model with
optimal variables

Feature importance
Permutation
importance

Model Performance

Predicted CPUE
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3. Results and analysis
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significant variables

3.1 Performance of tree-based models with

Performance of the models
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Performances of four tree-based

Optimal variables ranking

Random Forest XGBoost

models with significant variables.

R-squared is an important metric for measuring the model, and
every tree-based model has an R-squared of more than 0.6.
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importance and the permutation

yellowfin tuna.
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The importance of optimal variables ranked by the feature

importance for the four tree-based

models. Temp_0, O2_97, SSH are all very important variables for

3.2 Prediction of spatiotemporal distribution
of yellowfin tuna in the Pacific Ocean

Average CPUE Comparison
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The average CPUE for each model was calculated for the years
1995 through 2019 and compared to the average observed
CPUE for each year, showing that the projected values were

nearly accurate.

Spatiotemporal distribution
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During 1995-1997, yellowfin tuna was mainly distributed in
the east and west sides of the Pacific Ocean, and less in the
central Pacific Ocean. The distribution map reveals an eastward
tendency in the fishery's centre of gravity. Each model predicts
an almost similar distribution of yellowfin tuna, with no

appreciable variations.
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Pacific Ocean.

Almost all tree-based models

crucial for yellowfin tuna. Al

Innovatively, we utilized the RFECV method borrowed from
feature engineering to systematically and objectively confirmed
the significant environmental variables which shape the
distribution of the yellowfin tuna.

Feature importance and permutation importance provide an
intuitive and straightforward way to
influential variables in a model

identify the most

Tree-based models trained on the selected predictors have high
performance to capture the distribution pattern across the

ranked Temp_0 as the most

Important variable, indicating that surface temperature is

| tree-based models consider sea

surface height (SSH) an essential environmental variable, both
in terms of feature importance and permutation importance.
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