# Identification and genomic analysis of a novel bacteriophage belonging to a new virus family infected with *Vibrio alginolyticus*

Jie Gao<sup>12</sup>, Rui Zhang<sup>3</sup>, Juntian Xu<sup>1</sup>, Huifang Li<sup>12\*</sup>, Yunlan Yang<sup>3\*</sup>

<sup>1</sup> Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China

<sup>2</sup> State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen 361005, China. <sup>3</sup> Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China

#### Background

- Vibrio has a very fast growth rate and a very short generation time.
- Pathogenic bacteria develop resistance to antibiotics.
- Phage therapy is a promising method to solve the drug resistance of pathogenic bacteria.

The objective of this study was to isolate a novel strain of *Vibrio alginolyticus* phage from natural water sources, specifically targeting the isolation of a unique strain, and subsequently evaluate its potential application as a biocidal agent based on its distinctive physiological and genomic characteristics.

## **Results and discussions**



Phage vB\_ValC\_RH1G has a short latency period and high burst size, and shows good adaptability to fluctuations in environmental factors.



Phage vB\_ValC\_RH1G is grouped in the same evolutionary clade as five other phages, including Va1, phiKT1024, phiTY18, VB\_VaC\_TDDLMA, and VB\_VaC\_SRILMA, and is distinct from all known phages approved by the International Committee for the Classification of Viruses (ICTV) for the purpose of Caudoviricetes.

## Conclusion

- Based on the results of phage physiological properties and genomic characterization, it was concluded that phage vB\_ValC\_RH1G could be involved in phage therapy as a biocidal agent.
- It is proposed that RH1G be grouped with five other phages into a new family for the purpose of Caudoviricetes.

Acknowledgments: This study was supported by National Natural Science Foundation of China (42206133), the Lianyungang Postdoctoral Research Funding Program (LYG20220003), Postgraduate Research & Practice Innovation Program of Jiangsu Ocean University (KYCX2023-106).

#### Supplementary research

