

Preliminarily results of the relationship between capture to fishing operation parameters and environmental parameters in tuna purse seine fishery

王禹程¹,周成¹,谢程兰²

1上海海洋大学海洋生物资源与管理学院,上海201306

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, R. R. China 2中水集团远洋股份有限公司, 北京 100032

CNFC Overseas Fisheries Co..LTD.. Beijing 100032. P. R. China

BACKGROUND

Result

Season Anaphase Metaphase Prophase

- Many pelagic species, including some tunas, sharks and rays, exhibit associative behavior underneath Fish aggregation devices (FADs);
- The selectivity of purse seine fishing is poor, especially when using FADs assisted, which impacts endangered, threatened and protected (ETP) species and recruitment of target species;
- Scientists and fishing gear technologist are collaborating with fishing industry to test solutions to reduce nontarget species mortality;
- Therefore, this study employed a generalized additive mixed model (GAMM) to evaluate the relationship between capture of tuna, juvenile tuna and silky shark (*Carcharhinus falciformis*, FAL) to fishing operation parameters and environmental parameters.

- s(phytoplankton)+random=~(1|season)+(1|FAD_depth
- Juvenile=s(Dvalue)+s(longitude)+s(latitude)+s(Stime)+s(SST)+
- s(SSS)+s(phytoplankton)+random=~(1|season)+(1|FAD_depth
- FAL=s(Dvalue)+s(longitude)+s(latitude)+s(Stime)+s(SST)+s(SSS)+
- s(phytoplankton)+random=~(1|season)+(1|FAD_depth)。

GAMM results

Fig.1 Spatial distribution of the 346 FADassociated sets positions collected from logbooks in the Central and Western Pacific Ocean during 2021-2022.

Summary of fishing capture

Fig.2 Spatial and biomass distributions grouped by capture class (A, Catch; B, Juv; C, FAL)

Fig.3 Effect of fishing operation parameters, environmental parameters and random effects on capture.

- Dvalue had a significant positive effect on Catch and Juvenile, but a negative effect on FAL, indicating that larger time differences benefit the former two but reduce FAL catches;
- Latitude showed a positive trend in both the Catch and Juvenile models, with higher latitudes associated with greater catches, while FAL catches were highest at midrange latitudes;
- Phytoplankton concentration exhibited complex nonlinear relationships across all models, but higher levels were generally associated with increased Catch and FAL;
- Salinity had a nonlinear effect on Catch and Juvenile, with optimal catch rates at around 34.5‰, whereas FAL catches decreased with higher salinity;
- Surrounding time was negatively correlated with all catch rates, with longer surrounding times leading to reduced catch efficiency;
- For random effects, season had a significant impact on Catch and Juvenile, with the metaphase season showing the highest catch rates, while FAL catches were unaffected by season.