

## Optimization of neo-female induction technology and breeding of supermale in large yellow croaker (*Larimichthys crocea*)



Sixian Yang<sup>1,2</sup>, Weihua Hu<sup>2</sup>, Haidong Li<sup>1</sup>, Ruiyi Chen<sup>2</sup>, Zhiye Zhang<sup>1</sup>, Dongdong Xu<sup>2\*</sup>

1 School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China 2 Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province, China

## Abstract

Male large yellow croaker, favored for their slender build, can improve breeding economic benefits with all-male cultivation. Sex reversal to produce neo-female and supermale fish is method for all-male populations within the XY sex system. The study induced neo-female fish by feeding diets with E2 concentrations (0, 0.2, 1, 5 mg/kg) to large yellow croaker. E<sub>2</sub> was found to inhibit growth, lower survival, and boost antioxidant enzyme activity, showing a dose-dependent effect. Sex reversal rates were 67%, 95%, and 100% in respective treatment groups, making  $1 \text{ mg/kg } E_2$  the best induction dose. At six months, neo-female fish ovaries were histologically similar to controls, but development lagged after nine months. These fish, like females, expressed only the female gene cyp19a1a, not the male gene dmrt1. Molecular and histological confirmation showed neo-female fish could produce supermales when mated with males. The study established effective methods for inducing neo-female and cultivating supermale large yellow croaker, supporting all-male production with theory and tech know-how.





## Results

| Itebuitb                                                                                                |          |             |                      |                    |                         |                     |                |                       |
|---------------------------------------------------------------------------------------------------------|----------|-------------|----------------------|--------------------|-------------------------|---------------------|----------------|-----------------------|
| Table 1. Impact of different concentrations of $E_2$ on the sex reversal ratio of large yellow croaker. |          |             |                      |                    |                         |                     |                |                       |
| Mph                                                                                                     | Groups   | Sample size | Phenotypic<br>female | Phenotypic<br>male | Phenotype-<br>uncertain | Genotypic<br>female | Genotypic male | Sex-reversal<br>ratio |
| 4                                                                                                       | Con      | 20          | 65%                  | 35%                | 0                       | 65%                 | 35%            | -                     |
|                                                                                                         | 0.2mg/kg | 20          | 65%                  | 5%                 | 30%                     | 45%                 | 55%            | 37%                   |
|                                                                                                         | 1mg/kg   | 20          | 90%                  | 0                  | 10%                     | 40%                 | 60%            | 83%                   |
|                                                                                                         | 5mg/kg   | 20          | 100%                 | 0                  | 0                       | 70%                 | 30%            | 100%                  |
| 6                                                                                                       | Con      | 20          | 40%                  | 60%                | 0                       | 40%                 | 60%            | _                     |
|                                                                                                         | 0.2mg/kg | 20          | 75%                  | 20%                | 5%                      | 50%                 | 50%            | 50%                   |
|                                                                                                         | 1mg/kg   | 20          | 100%                 | 0                  | 0                       | 40%                 | 60%            | 100%                  |
|                                                                                                         | 5mg/kg   | 20          | 100%                 | 0                  | 0                       | 55%                 | 45%            | 100%                  |
| 9                                                                                                       | Con      | 20          | 50%                  | 50%                | 0                       | 50%                 | 50%            | _                     |
|                                                                                                         | 0.2mg/kg | 20          | 80%                  | 20%                | 0                       | 10%                 | 90%            | 78%                   |
|                                                                                                         | 1mg/kg   | 20          | 100%                 | 0                  | 0                       | 50%                 | 50%            | 100%                  |
|                                                                                                         | 5mg/kg   | 20          | 100%                 | 0                  | 0                       | 45%                 | 55%            | 100%                  |
| 15                                                                                                      | Con      | 20          | 55%                  | 45%                | 0                       | 55%                 | 45%            | _                     |
|                                                                                                         | 0.2mg/kg | 20          | 70%                  | 30%                | 0                       | 10%                 | 90%            | 67%                   |
|                                                                                                         | 1mg/kg   | 20          | 100%                 | 0                  | 0                       | 50%                 | 50%            | 100%                  |
|                                                                                                         |          |             | 10001                |                    |                         | 1001                | 1001           | 1000                  |



Fig. 6. Histlogical examination of groups with control (A-H) and the  $1mg/kg E_2$  (Q-X) large yellow croaker gonads at 4, 6, 9 and 15 month post-hatch(mph). A-D, ovaries of control fish with XX genotype; E-H, testes of control fish with XY genotype, Q-T, ovaries of  $1mg/kg E_2$ fish with XX genotype; U-X, ovaries of  $1mg/kg E_2$  fish with XY genotype; PO, peri-nucleolus oocyte; OD, oil-droplet stage oocytes; VO, vitellogenesis oocytes; SG, spermatogonia; PSC, primary spermatocyte; SSC, second spermatocyte; SPZ, spermatozoa.



Fig. 7. Gonadosomatic index (GSI) in the control and  $E_2$ -treated groups at 9 mph (A), 10 mph (B), 12 mph (C), and 15 mph (D). Different letters indicate significant differdence (P < 0.05).

Fig. 8. Histological observation of the gonads in the offspring at 140dph from the crossbreeding of neo-female and male fish. Genotype XX female fish (A), genotype XY male fish (B), and genotype YY supermale fish (C). D shows the genetic sex identification. PO, peri-nucleolus oocyte; SG, spermatogona; SSC, second spermatocyte; SPZ, spermatozoa.



## Conclusion

(1) This study demonstrates that oral administration of  $E_2$  can effectively induce feminization in large yellow croaker. (2) Considering all the effects of  $E_2$  on growth (during  $E_2$  treatment), survival, sex ratio, and gonadal development, we concluded that a dietary dose of 1 mg/kg  $E_2$  is the optimal dosage for the feminization of large yellow croaker.

(3) We successfully bred supermale large yellow croaker, providing a theoretical basis and technical support for the production of all-male large yellow croaker.