Effects of Ca²⁺, Mg²⁺ and K⁺ concentrations on survival, growth and physiological indices of *Strongylocentrotus intermedius*. Xuechun Jiang, Fanjiang Ou, Wenzhuo Tian, Hao Guo, Peng Liu, Shuaichen Wu, Tongshan Jia, Jun Ding, Yaqing Chang, Weijie Zhang* Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China, 116023 Abstract: Abstract: To investigate the effects of Ca^{2+} , Mg^{2+} , and K^+ concentrations on *Strongylocentrotus intermedius*, experimental groups with Ca^{2+} , Mg^{2+} , and K^+ concentrations set at 0.5, 1, 1.5, and 2 times those of normal seawater were established for cultivation. The results showed that lower concentrations of Ca^{2+} , Mg^{2+} , and K^+ significantly reduced the sea urchins' mortality rate (P < 0.05); the specific growth rate of sea urchins was significantly decreased with the increase of Mg^{2+} concentration; the increase of Ca^{2+} and K^+ concentration could significantly increase the gonad index of sea urchin, but Ca^{2+} and K^+ at twice the concentration could significantly reduce the gonad index; Ca^{2+} and Mg^{2+} concentrations had a significant impact on pepsin activity, which increased as ion concentrations rose; the effect of K^+ concentration on amylase activity was significant. With the increase of K^+ concentration, amylase activity increased first and then decreased; the activity of acid phosphatase was significantly increased by 2 times concentration of K^+ . The results showed that Ca^{2+} , Mg^{2+} , and K^+ had a great influence on the growth, physiological function and enzyme activity of sea urchin, and the ion concentration should be detected and adjusted when carrying out mariculture. ## **Problem Definition** ➤ The effects of different concentrations of Ca²⁺, Mg²⁺, and K⁺ on the growth status and some enzyme activities of *Strongylocentrotus intermedius* were studied to determine the most suitable Ca²⁺, Mg²⁺, and K⁺ conditions for sea urchin, so as to provide a solid scientific basis for sea urchin to create the most suitable growth environment. ## Method & Results The sea urchins were cultured in Ca²⁺, Mg²⁺, and K⁺ experimental groups with 0.5, 1, 1.5 and 2 times of normal seawater concentration, respectively. The survival rate, specific growth rate, gonad index and some enzyme activities of sea urchins were detected and analyzed. ➤ The sea urchins with 2 times concentration of Mg^{2+} and 0.5 times concentration of Ca^{2+} , Mg^{2+} , and K^+ all died. The decrease of Ca^{2+} , Mg^{2+} , and K^+ concentration significantly reduced (P < 0.05) the survival rate of sea urchins. | | Groups | | | | | | |-----------------|-----------|-----------|------------|----------|---------|---------| | Items | 1.5tim | 2times | 1.5times | 1.5times | 2times | control | | | es | Ca^{2+} | Mg^{2^+} | K^{+} | K^{+} | group | | | Ca^{2+} | | | | | | | Survival Number | 15 | 13 | 11 | 15 | 15 | 15 | | Survival rate | 100% | 86.7% | 73.3% | 100% | 100% | 100% | \succ The specific growth rate of sea urchin decreased significantly with the increase of Mg^{2^+} concentration. \succ The increase of Ca²⁺ and K⁺ concentration could significantly increase the gonad index of sea urchin, but Ca²⁺ and K⁺ at twice the concentration could significantly reduce the gonad index. ➤ Ca²⁺ and Mg²⁺ concentrations had a significant impact on pepsin activity, which increased as ion concentrations rose. ➤ The effect of K⁺ concentration on amylase activity was significant. With the increase of K⁺ concentration, amylase activity increased first and then decreased. \succ The activity of acid phosphatase was significantly increased by 2 times concentration of K^+ . ➤ The results showed that Ca²⁺, Mg²⁺, and K⁺ had a great influence on the growth, physiological function and enzyme activity of sea urchin, and the ion concentration should be detected and adjusted when carrying out mariculture.